Vol. 39 No. 8 August 2010

文章编号:1004-4213(2010)08-1477-4

液体中光击穿所激发声场的方向性研究*

高立民,曹辉,郭建中

(陕西师范大学 应用声学研究所,西安 710062)

摘 要:从液体中光击穿所激发声场的柱体模型和靶盘模型出发,运用声学基础的理论原理,提出 了等离子体椭球模型,对光击穿所激发声场的方向性进行了理论研究.通过 MATLAB 仿真得到此 声场的方向特性图,进而分析和比较了能量不同、照射区域大小不同的激光束所激发声场的方向 性.研究表明等离子体椭球模型更符合实验情况.

关键词:光击穿;辐射声场;等离子体椭球;方向性

中图分类号:O426.3;TN249

文献标识码:A

doi:10.3788/gzxb20103908.1477

0 引言

声纳是利用声波在水下的传播特性,通过电声转换和信号处理,完成水下目标探测和通讯任务的设备,而声纳对水中小目标的探测具有一定的局限性^[1].利用激光致声技术探测是一种新的可行的探测手段,它具有明显的优点:一是它可以从空中远距离上激发水下声波;二是只要激光能量足够大,它可以产生高声源级的声波;三是激光在水中激发的声脉冲很窄、频带很宽、频谱可调、适用范围广;四是光声转换效率高(在水中光击穿产生声波的转换效率高达 30%^[2]),可产生强脉冲声波,在时间和空间上都具有极高的分辨率.这些对于水声应用尤其是水声遥感应用具有重要意义,因此激光致声技术具有重要的工程应用前景^[3].

研究液体中光击穿所激发声场的方向特性对于 合理选择激光致声条件和正确设计声接收系统参量 具有重要意义.文献[4]给出了一个理论模型(等离 子柱体模型),认为在一条线段上均匀分布着多个脉 冲球源,由这样一系列球源线性叠加形成了一个等 离子柱体,球源直径等于柱体直径.但是,此模型只 考虑了一维情况,因而具有一定的局限性.文献[5] 给出了一个等离子体圆盘(简称靶盘)模型,认为一 系列脉冲球源均匀发散地铺开形成一个等离子体圆 盘,此圆盘厚度等于球源半径.但是,在实验中在足 够清洁的液体中,当激光光强超过阈值光强不多时,

Tel:029-85303230 Email:gaolim 收稿日期:2010-01-07 修1

Email:gaoliminlunwen@163.com 修回日期:2010-02-05 在聚焦区附近产生数量不多的含等离子体的发光腔体,它们近似于球状,分布在一直线段上,并且各自独立地激发声波,其波阵面接近于球面.当脉冲激光光强足够大时,大量的发光腔体融合而形成激光火花,它具有沿激光传播方向伸长的形状^[6],所以靶盘 模型也不符合实验情况.

本文在等离子柱体模型和等离子体圆盘模型的 基础上,考虑到激光脉冲在聚焦区域的特征以及液 体中光击穿的实验情况^[78],提出了适用于液体中光 击穿的等离子体椭球模型.通过该模型的建立,在理 论上的到了液体中光击穿所激发声场的指向特性.

1 等离子体椭球模型

等离子体椭球模型:由空间能量的传播特性,在 液体中光击穿区形成了多个相同的等离子体脉冲球 源,由这样一系列脉冲球源组合就形成了一个等离 子体椭球,如图 1. 椭球的半长轴 a=L/2,L 为光击 穿长度(与激光束的能量相关),半短轴 $b=D_0/2,D_0$ 为中心圆盘的直径(与激光束照射区域相关).把椭 球分成(2n+1)个厚度相同的圆盘(其中 $2n \approx L/$ $2R_0$),各个圆盘的厚度记为 C,且 C 等于脉冲球源

图 1 等离子体椭球模型 Fig. 1 Plasma ellipsoidal model

^{*}国家自然科学基金(10974128)、陕西省教育厅基金 (07JK215)、陕西师范大学重点科研项目(液体中光击穿产 生声波效应的研究)和陕西师范大学研究生培养创新基金 (2010CXS026)资助

的直径即 $C = 2R_0$,各个圆盘的直径记为 D_i (其中 $i = -n, -(n-1), \dots, -1, 0, 1, \dots, n-1, n$),各个圆 盘的中心坐标记为 z_{i0} ,则 $z_{00} = 0, z_{i0} = 2R_0 i$.在 xoz 平面中,椭球的投影为椭圆,且椭圆的半长轴 a = L/2,半短轴 $b = D_0/2$.由于 $z_{i0} = 2R_0 i$,所以在椭圆中 由数学运算可得, $D_i = D_0 (1 - 16R_0^2 i^2/L^2)^{1/2}$,令 $D_n = D_{-n} = 2R_0$.

各个圆盘如图 2. 图 2 中大圆上的每个小球均 代表一个等离子体脉冲球源,即一个小振源,所有这 些等离子体脉冲球源均匀发散地排布就形成了一个 等离子体圆盘,圆盘的厚度等于球源直径.

图 2 圆盘示意图 Fig. 2 Schematic diagram of disc

2 等离子体椭球辐射声场的方向性

2.1 简谐球面波的波动方程

在研究单个脉冲球源产生的声波的波动特性时,将脉冲球源视为有一定度量的做简谐脉动的球体;而在研究多个脉冲球源组成的等离子体椭球时, 在远场情况下,可将脉冲球源作为位置在自身球心处的点源处理,而点声源发出的声波为辐射球面波.

设在均匀无限介质中有一个简谐脉动的小球, 其辐射的声波为各向均匀简谐球面波,它的波动方 程为

$$\frac{\partial^2 p}{\partial t^2} = c^2 \left| \frac{1}{r^2} \frac{\partial}{\partial r} \right| r^2 \left| \frac{\partial p}{\partial r} \right|$$
(1)

由式(1)解得

$$p = (A/r) e^{j(\omega t - kr)}$$
⁽²⁾

而声压 p 的实际值是式(2)右边的实部.

2.2 辐射声场的方向性

计算各个点源的振动传到观察点 p 处的相位 差.在以椭球中心为球心,r 为半径的球面上讨论辐 射声场的方向性,如图 3.

图 3 中,坐标原点 o 定在椭球中心处,以中心圆 盘所 在 平 面 为 xoy 平 面, $P(x_p, y_p, z_p)(x_p = r\sin q\cos\theta, y_p = r\sin q\sin\theta, z_p = r\cos q)$ 为观察点, $Q_{ij}(x_{ij}, y_{ij}, z_{ij})$ 为等离子体椭球上的一个振源即为

图 3 方向性计算原理图

Fig. 3 Schematic diagram of directivity calculation 第*i*个圆盘的第*j*个脉冲球源的坐标点.

因为 $|OQ_{ij}| \ll r$,所以 $\angle OPQ_{ij} \approx 0^{\circ}$,则 Q_{ij} 处振 源的振动相对于o点处振源的振动传到观察点p的 相位差 ε_{ij} 为

$$\varepsilon_{ij} = (2\pi/\lambda) (x_{ij} \sin \varphi \cos \theta + y_{ij} \sin \varphi \sin \theta + z_{ij} \cos \varphi)$$
(3)

显然在各个等离子体圆盘中, $z_{ij} = z_{i0} = 2R_0 i$.

设仅由等离子体椭球中心 o 处振源产生的声波 传到观察点 p 引起 p 点的振动方程为

$$p_{00}(t) = (A_{00}/r)\cos(\omega t)$$
(4)

式中, $|A_{00}/r|$ 是椭球中心 o 处振源在距其 r 的位置 产生声波的振幅.

若 Q_{ij}处振源和 o 处振源是同相位振动,则由等 离子体椭球上的一个振源 Q_{ij}产生的声波传到观察 点 p 引起 p 点的振动方程为

$$p_{ij}(t) = A_{ij} / r_{ij} \cos \left(\omega t + \varepsilon_{ij}\right)$$
(5)

式中, r_{ij} 是 Q_{ij} 到观察点p的距离 $|Q_{ij}P|$, $|A_{ij}/r_{ij}|$ 为椭球上 Q_{ij} 处振源在距其 r_{ij} 的位置产生 声波的振幅.

若等离子体中心圆盘中含有(N₀+1)个脉冲球 源,则在其它的各个圆盘中含有的脉冲球源个数为

 $N_{i} = (1 - 16R_{0}^{2}i^{2}/L^{2})N_{0} + 1$ $\Rightarrow \psi, i = -n, -(n-1)\cdots, -1, 0, 1, \cdots, n-1, n,$ $(2n \approx L/2R_{0}).$ $(2n \approx L/2R_{0}).$ $(2n \approx 2n + 2R_{0}).$ $(2n \approx 2n + 2R_{0}).$

对于由(2n+1)个等离子体圆盘组成的椭球产 生的辐射声场,只要把各个圆盘中的每个脉冲球源 的辐射声压叠加起来即可.即有

$$P(t) = \sum_{i=-n}^{n} \sum_{j=0}^{N_0 (1-16R_0^2 t^2/L^2)} \frac{A_{ij}}{r_{ij}} \cos(\omega t + \varepsilon_{ij})$$
(7)

对于 $L \ll r$ 的远场,从各个圆盘的脉冲球源传到观测点 p 的声波,距离近似相等,即式(7)中振幅部分的 r_{ij} 可近似地用椭球中心到观测点 p 的距离 $r \approx$ 代替.则式(7)可以简化为

$$P(t) = \left[\sum_{i=-n}^{n} \sum_{j=0}^{N_0(1-16R_0^2 i^2/L^2)} A_{ij} \cos(\omega t + \varepsilon_{ij})\right]/r$$
(8)

$$\varphi = \arctan \frac{\sum_{i=-n}^{n} \sum_{j=0}^{N_0(1-16R_0^2 i^2/L^2)} A_{ij} \sin \varepsilon_{ij}}{\sum_{i=-n}^{n} \sum_{j=0}^{N_0(1-16R_0^2 i^2/L^2)} A_{ij} \cos \varepsilon_{ij}}$$
(10)

则等离子体椭球产生的辐射声场的方向性函数是

$$D(\varphi,\theta) = \frac{A}{A_{\max}} = \frac{\left|\sum_{i=-n}^{n} \sum_{j=0}^{N_0(1-16R_0^2 i^2/L^2)} A_{ij} e^{J\epsilon_{ij}}\right|}{\left|\sum_{i=-n}^{n} \sum_{j=0}^{N_0(1-16R_0^2 i^2/L^2)} A_{ij}\right|} \quad (11)$$

式中:j为虚数单位, A_{max} 是 A 在空间方向的最大值.

3 椭球模型的理论计算与分析

为简化处理,方便理论计算,所以做三点假设: 1)等离子体椭球的各个圆盘的各个脉冲球源均 匀发散排布,而各个圆盘中心的脉冲球源沿激光传 播方向均匀排布;2)等离子体椭球上的各个脉冲球 源同相位振动;3)各个圆盘的各个脉冲球源的振幅 从等离子体椭球中心沿径向和纵向两个方向,按指 数规律减小.

根据等离子体椭球模型,由式(11)经理论计算 得到液体中光击穿所激发声场的方向特性如图 4.

图 4 方向特性图

Fig. 4 Directivity of acoustic field characteristic

在图 4 中,从(a)到(c)等离子体椭球上的振源 个数逐渐增多,而振源的个数是由激光束的能量和 照射区域大小决定的.因此由图 4 可以得到:

1) 当激光束能量超过阈值不多、照射区域较小时,等离子体脉冲球源个数较少,椭球的长轴远大于短轴,椭球近似于柱状,各个振源产生的声波叠加后,指向性比较均匀,主瓣的方向性优势不是很明显,有些甚至分辨不出主瓣.此时,*L*≫D₀,所以式(11)中的j取定值零,其结果与文献[4]结果一致.

2) 当激光束能量较大、照射区域较大时,等离子体脉冲球源个数增多,椭球的长轴远小于短轴,椭球 近似于盘状,各个振源产生的声波叠加后形成突出 的指向性.此时,*L*≪*D*₀,所以式(11)中的i取定值 零,其结果与文献[5]结果一致.

3)当激光束能量很大、照射区域较大时,等离子体脉冲球源个数很多,椭球的体积变大,各个振源产生的声波叠加后形成尖锐的指向性,而且随着能量

的提高,主瓣变窄,指向性变强,同时旁瓣也变多.

4 结论

本文从液体中光击穿的等离子柱体模型和等离 子体圆盘模型出发,建立了等离子体椭球模型来研 究液体中光击穿所激发声场的方向性,从理论上得 到了此辐射声场的方向性函数,并做出了方向特性 图,为液体中光击穿所激发声场的理论研究和实验 验证提供了一定的理论基础.

等离子体椭球模型与原有的柱体模型、靶盘模型相比能够描述整个液体中在激光束能量不同、照射区域大小不同发生光击穿时的实验情况,尤其是在激光束能量很高、照射区域较大的激光条件下更符合实验情况.同时也表明当激光束能量超过阈值不多、照射区域较小时,等离子体柱体模型理论与实验符合较好;当激光束能量较大、照射区域较大时,等离子体靶盘模型理论较符合实验情况.另外,等离

子体椭球模型的另一个优点是能够由激光束的能量 和液体中光击穿的边界条件更加客观的估计出各个 振源产生的声波振幅 A_{ij}和声压 p_{ij}.通过对该模型 的理论分析,所得结果是对液体中光击穿所激发声 场的方向性的定性描述,对于理解、开发和利用光击 穿技术具有一定的指导意义.

参考文献

1/80

- [1] 顾浩年. 鱼群探测器(三)[J]. 海洋渔业,1992,14(1):40.
- [2] CAO Hui, SHANG Zhi-yuan. The research of optical breakdown threshold in liquid [J]. Acta Photonica Sinica, 2002, 31(4): 438-440.
 曹辉,尚志远. 液体光击穿阈值的研究[J]. 光子学报,2002,31 (4):438-440.
- [3] ZHANG Xiao-chun. Technology and its applications of laser ultrasonic[J]. College Physics, 1998, 17(2): 40-42.
 张晓春.激光超声技术及其应用[J].大学物理,1998,17(2): 40-42.
- [4] CAO Hui, SHANG Zhi-yuan. The research of directivity of the sound field through mechanism of laser-induced liquid breakdown[J]. Journal Of Northwest University (Natural Science Edition), 2003, 33(1): 19-22.

曹辉,尚志远.液体光击穿所激发声场的方向性[J].西北大

学学报(自然科学版),2003,33(1):19-22.

- [5] YU Yang, WANG Jiang-an, JIANG Xing-zhou. The study of theory of directivity of laser-induced sound radiating field in water[J]. Laser & Infrared, 2007, 37(1): 26-28.
 余扬,王江安,蒋兴舟.激光致声水中辐射声场的方向性研究[J]. 激光与红外,2007,37(1):26-28.
- [6] QI Yi-rang, XU Long-jiang, ZHANG De-yong, et al. Directivity of sound field generated through mechanism of laser-induced liquid breakdown in water[J]. Acta Acustica, 1991, 16(2): 145-151. 戚诒让,许龙江,张德勇,等.水下光击穿所激发的声场的方向

粮宿证, 计元红, 尔德男, 寺. 小下元击牙所湿发的严切的方问 特性[J]. 声学学报, 1991, 16(2):145-151.

 ZONG Si-guang, WANG Jiang-an, JIANG Xing-zhou, et al. Experiment investigation of characters of bubble impulsion by optical breakdown[J], Acta Photonica Sinica, 2009, 38(6): 1543-1547.

宗思光,王江安,蒋兴舟,等.水中激光击穿空泡的高速摄影研 究.光子学报,2009,**38**(6):1543-1547.

[8] LI Sheng-yong, ZHU Qiang-hua, ZHAO Rui, et al. Properties of laser-induced cavitation bubble sound waves in viscous fluid[J]. Acta Photonica Sinica, 2009, 38(8): 2082-2086.

李胜勇,朱强华,赵瑞,等.粘性液体中激光空泡辐射声波的特性研究[J].光子学报,2009,**38**(8):2082-2085.

Directivity of Sound Radiating Field Generated by Laser-induced Liquid Breakdown

GAO Li-min, CAO Hui, GUO Jian-zhong

(Applied Acoustics Institute, Shaanxi Normal University, Xi'an 710062, China)

Abstract: The directivity of the sound fields excited by laser-induced liquid breakdown is studied through theory by using fundamental theories of acoustics. So a conclusion is drawn that directivity calculated by theory. The directivity of the laser-induced sound field is related to energy range and radiation area of the laser beam.

Key words: Optical breakdown; Radial acoustic field; Plasma ellipsoidal; Directivity

GAO Li-min was born in 1984. He is a M. S. degree candidate at Shaanxi Normal University, and his research interests focus on optoacoustic field.

CAO Hui was born in 1969. He obtained the Ph. D. degree in 2004. Now he is an associate professor and his research interests focus on optoacoustic field and power ultrasonic.